Retrovirus restriction by TRIM5 proteins requires recognition of only a small fraction of viral capsid subunits.
نویسندگان
چکیده
The host restriction factors TRIM5α and TRIMCyp potently inhibit retrovirus infection by binding to the incoming retrovirus capsid. TRIM5 proteins are dimeric, and their association with the viral capsid appears to be enhanced by avidity effects owing to formation of higher-order oligomeric complexes. We examined the stoichiometric requirement for TRIM5 functional recognition by quantifying the efficiencies of restriction of HIV-1 and murine leukemia virus (MLV) particles containing various proportions of restriction-sensitive and -insensitive CA subunits. Both TRIMCyp and TRIM5α inhibited infection of retrovirus particles containing as little as 25% of the restriction-sensitive CA protein. Accordingly, we also observed efficient binding of TRIMCyp in vitro to capsid assemblies containing as little as one-fourth wild-type CA protein. Paradoxically, the ability of HIV-1 particles to abrogate TRIMCyp restriction in trans was more strongly dependent on the fraction of wild-type CA than was restriction of infection. Collectively, our results indicate that TRIM5 restriction factors bind to retroviral capsids in a highly cooperative manner and suggest that TRIM5 can engage a capsid lattice containing a minimum of three or fewer recognizable subunits per hexamer. Our study supports a model in which localized binding of TRIM5 to the viral capsid nucleates rapid polymerization of a TRIM5 lattice on the capsid surface.
منابع مشابه
TRIM5 Acts as More Than a Retroviral Restriction Factor
The retrovirus restriction factor TRIM5α blocks post-entry infection of retroviruses in a species-specific manner. As a cellular E3 ubiquitin ligase, TRIM5α binds to the retroviral capsid lattice in the cytoplasm of an infected cell and accelerates the uncoating process of retroviral capsid, thus providing a potent restriction to HIV-1 and other retrovirus infections. The precise mechanism by w...
متن کاملPrimate TRIM5 proteins form hexagonal nets on HIV-1 capsids.
TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and ...
متن کاملSpecific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor.
The host restriction factor TRIM5alpha mediates species-specific, early blocks to retrovirus infection; susceptibility to these blocks is determined by viral capsid sequences. Here we demonstrate that TRIM5alpha variants from Old World monkeys specifically associate with the HIV type 1 (HIV-1) capsid and that this interaction depends on the TRIM5alpha B30.2 domain. Human and New World monkey TR...
متن کاملMechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α
Restriction factors and pattern recognition receptors are important components of intrinsic cellular defenses against viral infection. Mammalian TRIM5α proteins are restriction factors and receptors that target the capsid cores of retroviruses and activate ubiquitin-dependent antiviral responses upon capsid recognition. Here, we report crystallographic and functional studies of the TRIM5α B-box...
متن کاملTRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling.
UNLABELLED Host restriction factor TRIM5 inhibits retroviral transduction in a species-specific manner by binding to and destabilizing the retroviral capsid lattice before reverse transcription is completed. However, the restriction mechanism may not be that simple since TRIM5 E3 ubiquitin ligase activity, the proteasome, autophagy, and TAK1-dependent AP-1 signaling have been suggested to contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 87 16 شماره
صفحات -
تاریخ انتشار 2013